Miticide Efficacy & Compatibility with *P. persimilis*

Anna D. Howell (UCCE-Ventura County)
Oleg Daugovish (UCCE-Ventura County)
Meghan Malloy (Whitman College, WA)
Spider Mites
(Acari: Tetranychidae)

- Main pest in coastal California production
- Winter & Summer berries
Damage

• Feed on the underside of leaves
• Yellow mottling or dark spots on the topside
• Necrosis on underside
• Webbing
 • Spreads mites
 • Attracts dust on the underside
 • Can change transpiration
• Reduction in fruit size & yield

• Heavy infestations cause stunting & leaf drop

• Can kill a stressed plant
Two major mite pests

Twospotted spider mite

- No. 1 pest in Ventura Co. strawberry production
- Has >1,000 hosts
- Known to be resistant to >90 unique insecticide/miticide active ingredients in over 367 cases world wide
- Present in winter & summer berries
Two major mite pests

Lewis spider mite

- Increasing as a pest on strawberry & raspberry
- Found on raspberry, poinsettias, lemon, & castor bean
- Present in fall & summer berries
Spider mite control methods

Sprays

Miticides (conventional)
Organic sprays, oils (Organic)

Predator mite releases (Phytoseiidae)

Phytoseiulus persimilis
Neoseiulus californicus
N. Fallacis
Amblyseius andersoni
Efficacy of newest miticide

Nealta (BASF)

- BASF Experimental (Cyflumetofen)
- MOA:
 MET II electron transport inhibitor
- IRAC #25
- Bioassays to evaluate efficacy against Lewis spider mite
Methods

Treatments

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Concentration</th>
</tr>
</thead>
<tbody>
<tr>
<td>BASF experimental</td>
<td>13.7 fl. oz/acre</td>
</tr>
<tr>
<td>Acramite 50 WS</td>
<td>1 lb/ acre</td>
</tr>
<tr>
<td>DiWater</td>
<td>-</td>
</tr>
</tbody>
</table>

**DyneAmic was added to ALL treatments at a rate of 0.375% v/v

- Mid-Tier strawberry leaves were sprayed with each treatment & allowed to dry
15 adult ♀

Lewis spider mite

Laboratory conditions

- Bench top (RCBD)
- $24^\circ C \pm 1^\circ C$
- 18:6 L/D
- 50 – 55% RH
Percent Mortality:

Schneider-Orelli’s corrected mortality:

\[\frac{(T - C)}{(100 - C)} \times 100 \]

Where:

\(T = \) % mortality in treated

\(C = \) % mortality in control
Lewis Spider Mite Mortality

![Bar graph showing percent mortality (%) vs hours after treatment (HAT) for Nealta and Acramite 50WS.]
Lewis Spider Mite Eggs

![Graph showing the average number of eggs present after treatment](image-url)

- Nealta
- Acramite 50WS
- Control

Hours After Treatment (HAT)

Avg. eggs Present

- 96 hrs
2015 Field Study

<table>
<thead>
<tr>
<th>Treatment</th>
<th>Active Ingredient</th>
<th>Product Rate (per acre)</th>
<th>pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>Acramite 50WS</td>
<td>Bifenazate</td>
<td>16 oz</td>
<td>6.5</td>
</tr>
<tr>
<td>Acramite 50WS + Buffering agent*</td>
<td>Bifenazate + buffering agent</td>
<td>16 oz</td>
<td>5.5</td>
</tr>
<tr>
<td>Agri-Mek</td>
<td>Abamectin</td>
<td>16 fl. oz</td>
<td>6.5</td>
</tr>
<tr>
<td>Nealta</td>
<td>Cyflometofen</td>
<td>13.7 fl. oz</td>
<td>6.5</td>
</tr>
<tr>
<td>Untreated Control</td>
<td>---</td>
<td>---</td>
<td>6.5</td>
</tr>
</tbody>
</table>

*Buffering agent: Phosphorous acid (H₃PO₃)
Methods

• 50 ft. x 4ft. Beds with 2 plots per bed
 • 20 plants per plot (var San Andreas)
 • 40 plots total (2 reps per block)

• Collected 4 mid-tier leaves per plot each sampling date

• Treatments established in RCBD with four blocks
Data Collected:

No. live spider mites*
No. spider mite eggs
No. *P. persimilis* motiles*
No. *P. persimilis* eggs*
Twospotted spider mite motiles

#spider mite mobiles / trifoliate

- Bifenazate (Acramite)
- Bifenazate (Buffered)
- Abamectin (Agri-Mek)
- Cyflometofen (Nealta)
- Untreated

0 DAT
7 DAT
14 DAT
#Spider mite mobiles / trifoliate

<table>
<thead>
<tr>
<th>Treatment</th>
<th>0 DAT</th>
<th>7 DAT</th>
<th>14 DAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bifenazate (Acramite)</td>
<td>0.1</td>
<td>0.2</td>
<td>0.3</td>
</tr>
<tr>
<td>Bifenazate (Buffered)</td>
<td>1.5</td>
<td>2.0</td>
<td>3.0</td>
</tr>
<tr>
<td>Abamectin (Agri-Mek)</td>
<td>3.0</td>
<td>4.0</td>
<td>5.0</td>
</tr>
<tr>
<td>Cyflometofen (Nealta)</td>
<td>4.5</td>
<td>5.0</td>
<td>6.0</td>
</tr>
<tr>
<td>Untreated</td>
<td>1.0</td>
<td>1.5</td>
<td>2.0</td>
</tr>
</tbody>
</table>
$P. \text{ persimilis}$ motiles

![Bar chart showing the number of $P. \text{ persimilis}$ motiles under different treatments and time points.](image)
How do miticides affect predators?
Methods

• Leaf (1” disc) dip at the label rate & allowed to dry

• Treated leaf placed inside a petri dish with wet filter paper
 • Filter paper moistened daily
Methods

• 7 adult *P. persimilis* are placed onto the leaf (♀ & ♂’s)

• >35 TSSM motiles & eggs placed on the leaf for food
 • TSSM replenished every day
Lab Conditions

Temp: 82.4 °C ± 1 °C
% RH: 60-65%
16:8 hr (L/D)
RCBD on benchtop, 5 reps
Corrected Percent Mortality

- **Acramite**
- **Envidor**
- **Fujimite**
- **Kanemite**
- **Nealta**

Days After Treatment (DAT)

Average % Mortality
Fecundity (# eggs produced)
Fertility (# young produced)
Total live predators

![Graph showing total live predators over days after treatment (DAT).](image)
Summary

• Nealta is a new miticide that can be added to the rotation in strawberry

• Miticides differ in efficacy depending on the species of spider mites

• Effects of miticides on *P. persimilis* should be considered before spraying and releasing
Guidelines

Harsh on *P. persimilis*:
Fujimite & Envidor

“Soft” on *P. persimilis*:
Nealta

“Softer” on *P. persimilis*:
Acramite & Kanemite
Acknowledgements

Darin Allred (Arysta LifeSciences)
Kate Walker (BASF)
Syngenta Biolines
Michael Roberts
Jose DeSoto