Mechanical thinning of overstocked forests, prescribed burning and managed wildfire now being carried out to enhance fire protection of California's forests provide many benefits, or ecosystem services, that people depend on.
In a paper published in Restoration Ecology, researchers at UC Merced, UC ANR and UC Irvine reported that stakeholders perceived fire protection as central to forest restoration, with multiple other ecosystem services also depending on wildfire severity. Researcher Max Eriksson, lead author on the paper, noted that "forest restoration involves multiple fuels-reduction actions that were perceived as benefiting fire protection, with some also offering strong benefits to other ecosystem services such as air quality, wildlife habitat, soil retention and water supply."
The study showed that the total effect of an action such as mechanical thinning of forests aimed at reducing fuels includes not only the direct effect on reducing wildfire severity, but also secondary effects that improving fire protection has on benefits such as providing water and hydroelectricity for agriculture and communities across the state or storing carbon and reducing carbon-dioxide emissions from wildfire to the atmosphere. Fire management is therefore central to human well-being.
Across the western United States, researchers are addressing the huge challenge of transforming forest management from the historical goal of maximum resource extraction (e.g., timber production) to a paradigm built on multiple benefits, or ecosystem services.
The study involved a series of virtual workshops with natural-resource professionals, including forest managers, to understand their perceived effects of management actions on ecosystem services and the interactions of the various services. Eleven ecosystem services and nine currently used management actions were considered.
Safeeq Khan, co-author and UC ANR Cooperative Extension specialist in water and watershed sciences, adds, "Understanding both actual and perceived benefits provided by restoring overstocked forests is crucial to guiding the choice of management actions, public support, policy initiatives and investments by beneficiaries, i.e., monetizing ecosystem services."
UC Merced Professor and co-author Roger Bales points out that "reducing fuel loads is increasingly being recognized as an effective measure to transition our forests across the western United States from a destructive to a beneficial wildfire regime."
Bales adds, "Our research supports the perception that California's wildfire-vulnerable forests should primarily and urgently be restored to conditions that better regulate wildfire severity, and thus provide greater fire protection and other ecosystem-service benefits. Lower-severity wildfire is a natural and beneficial part of these ecosystems."
An important contribution of this study is the breadth of both ecosystem-service benefits and management actions considered. Study collaborator and ecosystem-service expert Benis Egoh, an assistant professor at UC Irvine, points out that, "This research recognized that given the complexity of forest ecosystems across the western United States, the investments required and the management constraints, increasing forest resilience requires a range of actions." She adds, "Accounting for perceived interactions of ecosystem services is key to multi-benefit valuation of restoration investments and to monetizing those benefits in equitable ways."