A tip of the insect veil to:
- Doctoral student Grace Horne, who studies with urban landscape entomologist Emily Meineke, assistant professor
- Doctoral student Alexia “Lexie" Martin, who studies with community ecologist Rachel Vannette, associate professor
- Doctoral student Marshall Nakatani, who studies with bee scientist Brian Johnson, associate professor
- Undergraduate student Mingxuan “Gary” Ge, entomology major and research scholar in the Research Scholars Program in Insect Biology. He is advised by community ecologist and professor Louie Yang of the UC Davis Department of Entomology and Nematology, and UC Davis distinguished professor and lepidopterist Art Shapiro of the Department of Evolution and Ecology.
Each recipient will receive a five-year fellowship providing three years of financial support, inclusive of an annual stipend of $37,000. The NSF-GRFP is the most prestigious award of its type and highly competitive. The annual acceptance rates are about 16 percent from among more than 12,000 annual applicants. The awards are given to outstanding graduate students who have demonstrated “the potential to be high-achieving scientists and engineers early in their careers.”
Grace Horne, Emily Meineke Lab
Grace Horne, who grew up in Marlborough, N.H., is a 2021 graduate of Colby College, Waterville, Maine, where she double-majored in biology (evolution and ecology), and environmental science (conservation biology), receiving magna cum laude (with distinction) in both majors. Horne, who joined the Meineke lab in 2021, studies plant-insect interactions, urban ecology, global change biology, natural history and community science.
Horne submitted this successful proposal:
Title: "Natural History Collections for Backcasting Plant-Insect Interactions in a Changing World."
Description: "Herbivory by caterpillars can have negative impacts on plant survival, growth, and reproduction. Interactions between plants and caterpillars, which are both metabolically tied to temperature, are particularly consequential for ecosystems. However, investigations of how species have and will interact under a changing climate are lacking. In particular, insects are in decline in many areas, but the downstream effects of insect herbivore losses and simultaneous climate change on plants are unclear. Thus, I propose to combine modern observations, a controlled experiment, and data cached in natural history collections to investigate effects of climate change on plant-insect interactions in a biodiversity hotspot."
Lexie Martin, a native of Cypress, Texas, is a 2021 graduate of the University of Texas, Austin, where she received her bachelor of science degree in biology, with a concentration in ecology, evolution and behavior, and a bachelor of science and arts in chemistry. She graduated with research distinction and as a dean's honored graduate. Martin's research interests include bees, mutualism, bee-microbe interactions, bee diversity, plant-pollination interactions, conservation and bee health. Her career plans are to pursue a professor position at a university, to continue researching bee-microbe interactions and other factors affecting bee health. Martin submitted this successful proposal
Title: "Effects of Intraspecifically Transmitted Versus Environmentally Acquired Microbes on Bees."
Description: "Although most social organisms can obtain microbes through intraspecific and environmental acquisition routes, few studies have directly compared how microbial acquisition route affects host health. In this project, I am investigating how microbes in the bee core gut microbiota vs. microbes obtained from flowers establish within the gut and affect the overall health of bumblebees (Bombus impatiens) and blue orchard bees (Osmia lignaria). I selectively introduced microbes obtained through each route to bees and will be measuring establishment within the gut, survivorship, fitness, and lipid stores. The results of this project will be applicable to other social organisms, as well as relevant to the management of commercial bees and crops."
Marshall Nakatani, from Lansdale, Pa., is a 2021 graduate of George Washington Univeristy, where he received his bachelor of science degree in biology, with a concentration in cell and molecular biology. He is in his second year as a UC Davis doctoral student. Nakatani's general interests include eusociality, the division of labor in social insects, and how genetics and the environment interact to determine phenotype. His career plans: to continue working in academia.
Nakatani submitted this winning proposal:
Title: "Social Influence on Molecular Mechanisms of Phenotypic Plasticity in Honeybee Circadian Rhythm."
Description: "The goal of my research is to uncover the social cues that entrain the clock and how the ontogeny of circadian rhythm is controlled in honeybees. These efforts will involve examining clock function in all four worker castes, along with the queens, drones, accelerated foragers, and reverted nurses through the use of western blots, immunocytostaining, and single cell RNAseq. The project will also examine how social cues, specifically brood pheromones, influence the rhythmicity of worker activity. This project will attempt to advance the understanding of the ontogeny of the honeybee circadian clock, specifically untangling the relationship between phenotype and the molecular state of the clock."
Gary Ge, who anticipates receiving his bachelor of science degree in entomology from UC Davis in 2023, was born in Beijing China, and schooled in New York City, Singapore and Hawaii.
In his project, he uses the American Apollo butterfly (Parnassius clodius) as a model to study how microclimatic conditions affect cold-adapted insects. P. clodius, a white butterfly, is found at high elevations in western United States (Washington, Oregon, Nevada and Canada) and in British Columbia, Canada.
“The genus Parnassius is prone to global warming due to its affinity for alpine and arctic habitats, and several species are considered to be threatened,” Ge wrote in his winning proposal. “The American Apollo has habitats ranging from coastal forests to above the tree line. Thus, they experience very different combinations of microclimatic variations depending on time and location. Unlike most other butterflies, their larvae develop under cold macroclimatic temperatures and demonstrate active behavioral thermoregulation. This makes them highly dependent and consequently sensitive to microclimatic temperatures. In addition, the adults are poor dispersers, limiting gene flow between spatially close populations. Their larvae are also likely the sole insect herbivore of the host plant species, thus microhabitat identification is easy in the field.”
Ge's project also factored in his winning the 2023 Dr. Stephen Garczynski Undergraduate Research Scholarship from the Pacific Branch, Entomological Society of America (PBESA), which encompasses 11 Western states, plus Canada, Mexico and U.S. territories.