Posts Tagged: drift
Surface inversions cause spray drift
On typical days, the air near the ground is warmer than the air above it. This is because the atmosphere is heated from below as solar radiation warms the Earth's surface. A surface inversion occurs when the atmosphere at the earth's surface is colder than the layer above it. There are four common causes of surface inversions, some of which can occur at the same time. Remember - inversions flow like water:
Advection of cool air:
A slab of cool air slides into and under a warmer air mass. This "drainage inversion" can occur when there are sea breezes, cold fronts or when cool air drains downhill into warmer air.
Advection of warm air:
Warm air flows over cool surfaces and lower layers cool more rapidly than those above.
Shading:
Shading from trees as well as from rolling terrain can cause an inversion to set in earlier and stay later.
Radiation cooling:
Around sunset, the ground cools rapidly by radiating heat upwards into space. The air in contact with the ground cools by conduction, causing the lowest layer of air to be cooler than higher layers. Air within this "radiation inversion" tends to remains in place.
Radiation inversions create problems for spray operators because they can cause pesticide spray to:
- stay concentrated for long periods over the target,
- move with the cool air for many miles when the breeze picks up,
- drain down slopes and concentrate in low-lying regions,
- drift unpredictably as the inversion dissipates during the morning
Radiation inversions happen every day and should always be expected to begin 3-4 hours before sunset, reach their apex just before sunrise and then dissipate no longer than an hour or so after sunrise… unless one or more of the following conditions occur:
- There is continuous overcast, low and heavy cloud.
- There is continuous rain.
- Wind speed remains above 7 m/h for the whole period between sunset and sunrise - although even this isn't always true.
Field air temperatures are often very different from local or regional forecasts, so the most reliable method of detecting inversion conditions is to measure temperatures at, and several meters above, the ground. Spray operators can recognize a surface inversion when:
- there is a big difference between the daytime and night time temperatures,
- evening and night time wind speeds are considerably less than during the day,
- sounds seem to carry further,
- odors seem more intense,
- daytime cumulus clouds tend to collapse toward evening,
- overnight cloud cover is 25% or less,
- mist, fog, dew and frost occur
- smoke or dust hangs in the air and/or moves laterally in a sheet.
If you suspect there's an inversion, then don't spray. Often, it's right on the label.
Farm Advisor Mark Battany measuring inversions
inversion
New UC IPM photo repository shows plant damage from herbicides
UC Statewide IPM Program
Identifying nontarget crop and ornamental plant damage from herbicides has become much easier with the launch of a new online photo repository by the Statewide IPM Program, University of California Division of Agriculture and Natural Resources.
Herbicides applied to manage weeds may move from the site where it was applied in the air or by attaching to soil particles and traveling as herbicide-contaminated soil. When an herbicide contacts a nontarget plant, a plant it was not intended to contact, it can cause slight to serious injury. Herbicide injury also occurs when the sprayer is not properly cleaned after a previous herbicide application. Herbicide residue can be found in the spray tank, spray lines, pumps, filters and nozzles so a sprayer must be thoroughly cleaned after an application. Dry herbicide particles can be redissolved months later and cause herbicide damage to plants. Economic damage includes reduced yield, poor fruit quality, distorted ornamental or nursery plants, and occasionally plant death.
Accurately diagnosing plants that may have herbicide injuries is difficult. In many cases, herbicide symptoms look very similar to symptoms caused by diseases, nutrient deficiencies, environmental stress and soil compaction. Plant disease symptoms such as mottled foliage, brown spots or stem death and plant pests such as insects or nematodes cause foliage to yellow and reduce plant growth similar to herbicide injury.
Dr. Kassim Al-Khatib, weed science professor at UC Davis and director of the UC Statewide Integrated Pest Management Program (UC IPM), has gathered nearly a thousand photos of herbicide-damaged plants, drawn from his own and others' research. The images are cataloged to show damage that can occur from 81 herbicides in more than 14 specific herbicide modes of action, applied in the field to demonstrate the symptoms or when known herbicide spray has drifted onto the plant.
Each image is characterized with the name of the plant, mode of action of the herbicide, and notes the specific symptoms of damage. Together these photos provide a comprehensive archive of damage to over 120 different crops and ornamental plants by known herbicides, which users can easily compare with what they see in the field.
Also included in the repository is information about the modes of action of various herbicides and an index of example herbicide trade names and active ingredients. Users can learn how unintended injury from herbicide occurs from misapplication and carryover from previous crops in addition to drift and herbicide-contaminated tanks.
The repository can be found at http://herbicidesymptoms.ipm.ucanr.edu. Increased knowledge about what causes herbicide damage and how it occurs can lead to fewer cases of herbicide injury occurring through drift or herbicide-contaminated tanks. Using the repository can increase the skill to correctly identify plant damage. Correctly identifying damage as herbicide injury and not from a plant pest or nutrient deficiency can prevent unnecessary applications of pesticides or fertilizers. Fewer applications can lessen the risk of harm of pesticides and fertilizers to people and the environment.
asphyxiated avocado