Posts Tagged: leaves
Earthworms, Soil Productivity, Citrus and Avocado
There are 4,000 species of earthworms grouped into five families and distributed all over the world. Some grow uo to 3 feet long, while others are only a few tenths of inches. We call them nightcrawlers, field worms, manure worms, red worms and some people call them little diggers.
In California, we have some native species of earthworms, but in many cases non-native introduced species have come to dominate. The predominant native species belong to the Argilophilus and Diplocardia while many of the non-native are of European in origin in the Lumbricidae family. Many of these non-natives were probably introduced by settlers bringing plants from home, which had soil containing the worms. A survey of California earthworms by the US Forest Service can be found at:
https://www.fs.fed.us/psw/publications/documents/psw_gtr142/psw_gtr142.pdf
This is a wonderful description of earthworm biology and their occurrence in the landscape.
When digging in citrus orchards, it is common to find earthworms in the wetted mulch under tree canopies. Many of our citrus orchards were initially established by “balled and burlap” nursery trees that brought worms along with the soil. In the case of many avocado orchards, on the other hand, it can be rare to find earthworms in orchards. Most avocado orchards have been established since the 1970s when potting mixes and plastic liners were the standard practice and worms were not part of the planting media. Even though there is a thick leaf mulch in avocado orchards, the worms have not been introduced, and it is rare to find them.
Numerous investigators have pointed out the beneficial effects of earthworms on soil properties. One of the first of these observers was Charles Darwin who published Earthworms and Vegetable Mould in 1881. He remarked on the great quantity of soil the worms can move in a year. He estimated that the earthworms in some of his pastures could form a new layer of soil 7 inches thick in thirty years, or that they brought up about 20 tons of soil per acre, enough to form a layer 0.2-inch-deep each year.
Earthworms, where they flourish, are important agents in mixing the dead surface litter with the main body of the soil. They drag the leaves and other litter down into their burrows where soil microorganisms also begin digesting the material. Some earthworms can burrow as deeply as 5 to 6 feet, but most concentrate in the top 6 to 8 inches of soil.
The worm subsists on organic matter such as leaves and dead roots near the soil surface. The earthworm ingests soil particles along with the organic matter and grinds up the organic matter in a gizzard just as a chicken does. This is excreted in what we call worm casts. The castings differ chemically from the rest of the soil, as they are richer in nitrogen, potassium and other mineral constituents.
Castings are a natural by-product of worms. When added to normal soils in gardens or lawns, they provide the same kinds of benefits as other bulky organic fertilizers. Castings today are not commonly used as fertilizer by commercial plant growers because of their cost relative to other fertilizers. However, castings are used by some organic growers and are sold commercially as a soil amendment or planting medium for ornamental plants grown in pots.
The physical soil churning process also has several important effects:
-Organic residues are more rapidly degraded with the release of elements such as nitrogen, sulfur and other nutrients.
-Some of the inorganic soil minerals tend to be solubilized by the digestive process.
-Extensive burrowing improves soil aeration.
-Burrowing can improve water penetration into soils
-The earthworm carries surface nutrients from the soil surface and imports them into the root zone of the plant.
Although earthworms are considered beneficial to soil productivity, few valid studies have been made to determine whether their presence will significantly improve plant growth. This may seem odd since many of us have learned from childhood that worms are good. It is something like the chicken and the egg analogy. The conditions that are conducive to earthworms are also ideal for plants. Both plants and worms need temperatures between 60 and 100 degrees F for good growth; both need water, but not too much or little; they both require oxygen for respiration; and they do not like soils that are too acid or basic or too salty. By correcting soil conditions that are unfavorable for one will also improve the outlook for the other. The earthworm is a natural component of the soil population. If the soil is properly managed this natural population will thrive. In this sense, the presence or absence or earthworms can be an indicator of the "fertility" of one's soil.
earthworm
Signs of Avocado Root Rot
In the last two weeks I’ve been out to see groves that have root rot, yet the growers did not recognize the signs. Two years of drought and use of salt loaded water have put stress on trees and made them more susceptible to root rot. Although irrigation management can bring about the symptoms of root rot – small, yellow, tip-burned leaves – because the tree in both cases is seeing a lack of water. I thought it would be appropriate to review the symptoms of avocado root rot.
What to look for:
Small, yellow, tip-burned leaves
Thin canopy
Die-back in the canopy, causing stag-horning (dead stems)
Little or no new leaf growth, hardened look to the leaves
Few or no leaves on the ground (tree doesn’t have energy to produce leaves)
Profuse flowering and small fruit
Sunburned fruit from reduced canopy
Then get on your knees and dig around in the wetted area of the root zone
Do you find roots in the top 3 inches of soil? NO, that’s a bad sign
Do you find any white root tips (it’s hard to find these when the soil is cold in the winter)? NO, that’s a bad sign.
Do you find black roots? Yes, that’s a bad sign.
These are all field diagnostics for avocado root rot. You can also sample roots and send them in for lab analysis, but in the winter, the root rot organisms are not active and you can actually get a false negative. Meaning the lab won’t pick it up and you then think you don’t have the disease. Use field clues to figure out whether you have root rot. Then figure out why you have it. It usually boils down to the amount and timing of water, but there are many other factors, such as water quality, fruit load, topworking and other stresses that can bring on the disease.
Images. Root rot in canopy, leaves and roots
root rot canopy
root rot leaves
root rot roots
Talking to Dennis Seaton - Inventorying Yellow Leaves
I had a chance to talk to PCA Dennis Seaton a few weeks back. During the farm call, he mentioned that he was making a survey of leaf ‘yellowing’ in his clients’ citrus orchards. He explained that he thought this would help him in the future, should HLB disease show up, in distinguishing the yellowing associated with HLB, from the other things, both biological and abiotic, that currently cause leaves to yellow in Kern County. This project sounded like a good idea to me. Currently, every time a new article appears in our local Bakersfield paper related to ACP and HLB, my phone is busy with homeowners concerned with yellow leaves. Unfortunately, we have always had a lot of ‘yellow’ leaves on Kern County citrus trees. A list of a few things (not complete) that can cause leaf yellowing is as follows:
Citrus stubborn disease - caused by a mycoplasm – also produces small, hard, green, lopsided fruit
Root rots (e.g.Phytophthora species, Fusarium species)
Alkaline soil - iron deficiency
Excessive irrigation
Gas leaks, oil-field waste oil in soil
Sunburn, heat stress (tends to be on older leaves)
Nutrient deficiency – iron, zinc, manganese,
Nutrient toxicity – boron, arsenic, sodium, chloride
Trifoliate and citrange tree decline
Pre-emergent herbicide uptake
Mite feeding, citrus leaf miner feeding, citrus thrips feeding
Chemical toxicity from foliar sprays (e.g. Biuret toxicity)
Tristeza disease – caused by a virus
For those who really want to try to diagnose HLB from yellow leaves, pictures of leaves with HLB can be found at the following webs address; http://www.californiacitrusthreat.org/huanglongbing-citrus-greening.php .
If we mentally divide a leaf with HLB symptoms in half, longwise, along the midrib, the yellowing is more asymmetric than is the case with other factors that can yellow leaves. That is, one half of the leaf will have yellow areas in different locations than the other half. Yellowing from zinc deficiency, on the other hand, looks pretty similar between halves. HLB leaf yellowing often affects individual branches or shoots more than neighboring branches or shoots. If you see leaf yellowing, always looks for the presence of ACP nymphs on new, young leaves. The nymphs, about the size of aphids, produce distinctive waxy tubules. See the website at www.californiacitrusthreat.org for pictures of the nymphs and adults of ACP. The insects themselves are much better indicators of possible HLB infection than leaf yellowing. The production of small, hard, greenish-yellow, sour fruit is another indication of HLB infection (but not definitive).
iron dieback citrus
Little evidence to support the use of foliar applied nutrients in avocado
Introduction
Foliar fertiliser application is sometimes promoted as an effective means of supplying nutrients to avocado. On the market are various products being promoted as foliar nutrients for avocado, some proponents even suggest that their products do away with the need for soil applied nutrients. This article briefly reviews the literature relating to foliar feeding of avocado and examines the anatomy of the avocado leaf and flower in relation to nutrient uptake.
The avocado leaf
The structure of plant leaves has evolved primarily to capture sunlight and exchange gases, roots have evolved to absorb nutrients and water and anchor the plant. Any absorption of nutrients by leaves is therefore likely to be more fortuitous than by design. In some crops passive nutrient absorption by leaves is occasionally sufficient to supplement the supply of nutrients taken up by the roots. Most often this involves trace elements, which as their name suggests are required in very small amounts (eg. copper and zinc). However if non-mobile elements or elements with limited mobility in the plant (eg. calcium, phosphorus, zinc, boron and iron) are absorbed when foliar sprayed they are not likely to make it down to the roots where they are also needed. Most nutrients will move freely in the water stream but the movement of many is restricted in the phloem, hence leaf applications don't meet the requirements of deficient trees. Occasionally major elements (such as nitrogen and potassium) are applied to make up for a temporary shortfall or provide a boost at a critical time. Citrus is an example of a crop where some benefits from foliar applied nutrients have been reported.
The ability of the leaf to absorb nutrients from its surface must depend to some degree on the permeability of its epidermis (outer layer) and the presence and density of stomates (pores for the exchange of gases). Scanning Electron Microscope studies of mature leaves and floral structures in avocado show the presence of a waxy layer on both the upper and lower surfaces of mature avocado leaves (Whiley et al, 1988). On the upper surface the wax appears as a continuous layer and there are no stomates. On the lower surface the wax layer is globular and stomates are present. Blanke and Lovatt (1993) describe the avocado leaf as having a dense outer wax cover in the form of rodlets on young leaves and dendritic (branching) crystals on old leaves including the guard cells (guard cells surround stomates). The flower petals and sepals in avocado have stomates on their lower surfaces and no wax layers on either surface, which might explain why floral sprays of boron might work.
Literature review
Nitrogen
Based upon total leaf nitrogen concentration, Embleton and Jones (unpublished) in a replicated trial in California in the early 1950's found no response to leaf sprays of urea on mature 'Fuerte' avocado trees in the field. Up to three sprays a year were applied.
Nevin et al (1990) reviewed urea foliar fertilisation of avocado and found only one study (Aziz et al., 1975) that reported positive results in terms of fruit yield. This trial by Aziz et al (1975) involved drenching sprays of significant amounts of urea four times a year (250 to 500 g of nitrogen per tree annually). It is unclear whether or not considerable amounts of the drenching spray reached the ground, nevertheless, the amounts applied were very high for foliar applications. No leaf analysis data was reported.
Galindo-Tovar (1983) was able to increase leaf nitrogen concentrations in ‘Hass’ avocado seedlings grown in a glasshouse with low concentrations of urea. However similar treatments on 3-year-old ‘Hass’ in the field for each month during spring failed to increase leaf nitrogen in mature leaves sampled a week after spraying. The author cited evidence for crops other than avocado suggesting that urea can penetrate leaf surfaces when grown in a greenhouse, but when grown in the field under full sun, leaf surfaces are different and resist movement of nitrogen into the leaf.
Klein & Zilkah (1986) reported substantial uptake of foliar urea-N when detached leaves of 'Fuerte' avocado were dipped in urea solutions. Zilkah et al (1987) reported the translocation of 15N from foliarapplied urea to vegetative and reproductive sinks of both 'Fuerte' and 'Hass' avocado. Despite the apparent response achieved by Aziz et al in Egypt, Klein & Zilkah, and Zilkah et al in Israel, attempts at the University of California to demonstrate significant uptake of nitrogen from foliar sprays have not been successful (Nevin et al., 1990).
Research at the University of California, Riverside, provided evidence that the leaf nitrogen content of 'Hass' avocado was not increased by foliar application of urea at the same concentration that increased citrus leaf nitrogen content two-fold (Nevin et al., 1990). Maximum uptake of 14C-urea by 'Hass' avocado leaves was physiologically insignificant after 2 days. Over 96% of the 14C-urea applied was recovered from the leaf surface even after 5 days. Maximum uptake of 14C-urea by leaves of 'Gwen' and 'Fuerte' was less than 7%. 15N, 14C-urea and 65Zn are radioactive forms of nitrogen, urea and zinc respectively that are used to track their movement through the plant.
Potassium
Sing and McNeil (1992) conducted a study on an orchard with a history of potassium deficiency where high magnesium levels in the soil competed with potassium for uptake. Foliar applications of 3.6% potassium nitrate were applied at half leaf expansion, full leaf expansion and one month after full leaf expansion. These foliar applications of potassium nitrate were effective in increasing the potassium level in the leaves of 'Hass' avocado trees, however two to three foliar applications per year were required to achieve the same result as one application of potassium sulphate (banded) to the soil once every 2 to 3 years. Accounting for labour and material costs the foliar sprays of potassium nitrate were estimated to be more expensive than soil applied potassium sulphate applied every three years. The foliar sprays also affected the levels of other nutrients in the leaf, some negatively.
Calcium
Calcium is receiving attention as an element in avocado fruit associated with better quality and longer shelf life. Several different calcium products were tested during the 1980’s as foliar sprays in South Africa in an attempt to raise fruit calcium levels but none were found to be effective.
Veldman (1983) reported that the treatment of avocado trees with one, three and six calcium nitrate sprays did not successfully control pulp spot in avocado fruit and there was no increase in fruit calcium levels on sprayed treatments.
Whiley et al (1997) report that calcium foliar sprays during fruit growth have little effect on internal concentrations in most fruit due to poor absorption by fruit, and lack of translocation within the tree.
Boron
Some benefits have been reported from foliar application of boron if applied at flowering. Timing is important because it appears that absorption takes place through flower structures and not leaves.
Jayanath and Lovatt (1995) reported on results of four bloom studies (two glasshouse and two field experiments) which demonstrated the efficacy of applying boron or urea sprays to 'Hass' avocado inflorescences during early expansion (cauliflower stage) but prior to full panicle expansion and anthesis. Anatomical analysis of the flowers provided evidence that the boron prebloom spray increased the number of pollen tubes that reached the ovule and also increased ovule viability, but to a lesser degree than urea. The urea prebloom spray increased ovule viability compared to boron-treated or untreated flowers. Urea also increased the number of pollen tubes that reached the ovule, but to a lesser degree than boron. However, combining boron and urea resulted in a negative effect even when the urea was applied 8 days after the boron. Lovatt (unpublished) provided an update on this work at the World Avocado Congress in 1999, after 3 years of field trials the only treatment to have a positive effect on pollination was the boron in Year 2, the most likely reason why it didn’t work in other years was thought to be low temperatures. There were only hardened leaves present at the time of foliar applications suggesting that uptake was through flower parts.
Whiley et al (1996) report that despite an increase in fruit set with foliar sprays of boron during flowering there has been no convincing evidence that showed increased final yield. Root growth has a requirement for boron and in deficient trees it is unlikely that sufficient nutrient from foliar applications would be translocated to the roots. Foliar applications have the advantage that specific organs can be targeted to enhance their boron concentrations, but with the disadvantage that insufficient boron can be absorbed through leaves to mediate chronic deficiency in trees. Soil applications have been shown to dramatically improve the health of boron deficient trees.
Mans (1996) experimented with ‘Hass’ trees that had leaf levels of nitrogen and boron below the accepted norms (N was 1.71% and B was 23ppm). The aim of this trial was to see if supplying nutrients directly on the flowers could increase the yield of ‘Hass’ trees growing in a cool environment. Mans (1996) found that if a multi-nutrient spray that included nitrogen and boron was applied as the first flowers started to open then he could increase yield and distribution of fruit size. The stage of flowering when spraying takes place was very important. Sprays that were applied pre-bloom, at fruitset or when fruitlets were present were not effective.
Iron
Kadman and Lahav (1971-1972) reported that the only means to control iron chlorosis in already established avocado orchards is soil application of iron chelates since applications of various iron compounds by foliar sprays have not been successful on a commercial scale. Gregoriou et al (1983) found that the quickest and most successful treatment of trees suffering from iron chlorosis on calcareous soils was obtained by incorporating Sequestrene 138 Fe-EDDHA in the soil.
Zinc
Kadman and Cohen (1977) found that avocado trees have difficulties in absorbing mineral elements through their foliage. In spite of this, spraying of apparently zinc-deficient orchards was rather common in California and some other countries. In Israel, some growers spray their orchards, but as experiments have shown, no apparent improvement occurs in leaves or fruits following such treatment. The results presented in this paper indicate that the penetration of zinc through the leaves is so slight that there is practically no benefit through supplying it by foliar sprays.
Zinc deficiency is common in avocado and is particularly difficult to address on high pH (alkaline) soils. Crowley et al (1996) evaluated methods for zinc fertilisation of ‘Hass’ avocado trees in a 2-year field experiment on a commercial orchard located on a calcareous soil (pH 7.8) in California. The fertilisation methods were:
• soil or irrigation-applied zinc sulphate
• irrigation-applied zinc chelate (Zn-EDTA)
• trunk injection of zinc nitrate
• foliar applications of zinc sulphate, zinc oxide, or zinc metalosate.
Among the three soil and irrigation treatments, zinc sulphate applied at 3.2 kg per tree either as a quarterly irrigation or annually as a soil application was the most effective and increased leaf tissue zinc concentrations to 75 and 90 mg/kg respectively. Experiments with 65Zn applied to leaves of greenhouse seedlings, showed that less than 1% of zinc applied as zinc sulphate or zinc metalosate was actually taken up by the leaf tissue. There was also little translocation of zinc into leaf tissue adjacent to the application spots or into the leaves above or below the treated leaves. Given these problems with foliar zinc, Crowley et al (1996) suggest that fertilisation using soil or irrigation applied zinc sulphate may provide the most reliable method for correction of zinc deficiency in avocado on calcareous soils.
Whiley and Pegg (1990) report that foliar applications of zinc have been found to be highly ineffective in Queensland orchards.
Price (1990) reports that zinc can be absorbed through the leaves (from foliar sprays, e.g. zinc sulfate, zinc chelate) but that insufficient zinc can be absorbed in this manner to meet the plants requirements, especially in avocados. Since zinc is required at the growing points of new roots and shoots, it is essential that most zinc be taken up by the roots.
Foliar fungicide sprays
If leaf applied nutrient sprays in avocado give inconsistent or nil effects why do foliar sprays of phosphorous acid work for the control of root rot? The amount of phosphorous acid uptake required for root rot control is small but even so, several applications per year are required to be effective and the canopy must be dense and healthy. The phosphonate concentration required in the roots for effective root rot control is in the order of 30 mg/kg. To achieve this level either three to four sprays of 0.5% phosphorous acid per year are required at strategic times (Leonardi et al., 2000) or alternatively six or more sprays of 0.16% phosphorous acid per year must be applied. Another factor contributing to the effectiveness of leaf applied phosphorous acid is that, unlike many nutrients, it is extremely mobile in the plant.
Borys (1986) reports the dry matter distribution of roots to shoots in avocado seedlings average 26% and 74% respectively. Using these figures and some critical nutrient and fungicide levels in avocado we can get some perspective on the relative quantities required. In a tree consisting of say 100 kg of dry matter, about 26 kg would be in the roots and 74 kg in the shoots. This tree with a phosphonate root level of 30 mg/kg would contain a total of about 0.8 g phosphonate in the roots. With the optimal leaf levels of 50 mg/kg of boron and 2.5% of nitrogen, the tree would contain about 4 g and 1850 g of boron and nitrogen respectively in the canopy alone. It can be seen from these relative amounts that the fungicide required is substantially less than the nutrients.
Conclusion
Apart from well-timed boron applications at flowering in situations where leaf boron levels are deficient, there is no clear evidence to support the use of foliar nutrient sprays in avocado to correct nutrient deficiencies or to supply nutrients for growth. Occasionally a foliar nutrient spray may succeed in alleviating leaf deficiency symptoms, however this type of application will not provide the tree’s longer-term requirements for this nutrient which should be addressed through soil applications.