Posts Tagged: ETo
ATMOMETERS FOR IRRIGATION MANAGEMENT
Efficient and precise irrigation management is becoming increasingly important inCaliforniaagriculture, both for maximizing crop quality and for conserving water. The most advanced irrigation scheduling strategy is based on local measurements of reference evapotranspiration (ETo), which is converted to crop evapotranspiration (ETc) with an appropriate crop coefficient (kc).
To be able to use this method, an irrigation manager needs to have locally accurate ETo values throughout the growing season. However, the highly variable microclimates that characterize many farming areas often make it difficult to use data from distant weather stations; therefore an accurate local measurement may often be preferable to relying on a regional value.
One inexpensive option for measuring ETo locally is to use a simple atmometer (Fig. 1). Atmometers are water-filled devices, in which the actual evaporation of water is measured over time. In their simplest form, the atmometer is outfitted with a graduated sight glass on the water supply tank which allows the user to easily measure the evaporation that occurred over a given period. In practice, this type of atmometer is most suited for making readings at multiple day intervals, for example once per week, or on days when irrigation is applied.
The performance of atmometers versus more expensive weather stations was evaluated on theCentralCoastin 2003. In this study, atmometers were placed adjacent to seven weather stations throughout the area, and weekly values for both methods were compared (Fig. 2). The results indicate that the atmometers and weather stations have very comparable ETo readings, with the atmometers indicating somewhat lower ETo values under conditions of lower evapotranspiration.
Like any technique, using atmometers has advantages and disadvantages. Advantages include their very low cost and ease of operation, with no computer or power required. Disadvantages include the potential for damage by freezing weather, the need to refill the water supply (every three to six weeks), and the need to read the gauge manually. Also, if they are installed in a large open area, birds may tend to perch on the evaporating surface and foul it with their droppings; for this reason several wires are installed on top of the device to
discourage birds from perching there. In general, atmometers function quite reliably with few problems.
Converting atmometer ETo readings to the amount of irrigation run time required to replenish the soil moisture lost to evapotranspiration is fairly straightforward. A relatively simple example for a sprinkler-irrigated field is presented below in Table 1.
Table 1. Example conversion of ETo to irrigation run times for a sprinkler irrigated field |
||
|
|
|
A. Measured atmometer ETo for one week |
2 |
inches |
B. Crop coefficient (kc) |
0.8 |
|
C. Calculated ETc for the week (=AxB) |
1.6 |
inches |
D. Sprinkler application rate |
0.13 |
in/hr |
E. Hours of irrigation required (=C/D) |
12.3 |
hours |
(Note: To convert Gallons to Inches: Gallons ÷ Area (square feet) ÷ ?0.6234 = Inches
To convert Inches to Gallons: Inches * Area (square feet) ÷ 1.604 = Gallons)
Atmometer installed on a fence post
atmometer
atmometer ET
Using Evapotranspiration (ETo) for Scheduling Irrigations: An Improvement on Guessing?
Quite frankly, in a county where water is costing $700 to $1000 per acre foot, we though this practice would have been a common practice. Added to this is the increasing pressure to reduce nitrate leaching into creeks and ground water, where there is a serious problem developing. The natural response when water prices are high is to reduce water use, but we have seen groves where even a 10% reduction in water reduces the yield by 50%, and we have also seen quite a few growers irrigating too much with the belief that a couple of extra feet of water per acre will more than pay the cost of water in increased yield. Clearly we need to apply enough water to make the trees produce a profitable yield, How does a farmer accomplish this?
I believe every grower should be using tensiometers or some other kind of soil moisture monitoring equipment to determine when to water, and using CIMIS to determine how much to water. There, just simply, is no an easier, or a better method.
Some growers said that tensiometers don’t work. Well, they work just fine if they are installed correctly and serviced periodically. If the soil gets too dry (the reading goes above 80 cb) the device breaks suction from the soil, and they don’t work until they are removed, filled, pumped and re-installed. As for gypsum blocks, they work just fine also, but are not very accurate under wet conditions. Both work a lot better than just guessing. There are newer electronic devices that work very well if calibrated with the soil moisture, but they don’t work very well in rocky soil (rocks don’t hold water).
Using CIMIS
This assignment is to help you figure out the water use in your grove. The following is a step by step procedure that is not difficult. Several of our grove managers use this on a weekly basis to calculate the water requirement in each of their groves. We have one grower who has this task assigned to his child in the third grade…Really, this is not that difficult!
This assignment will demonstrate how to use CIMIS to calculate the irrigation requirement for an avocado grove in Escondido. ETo is called the reference evapotranspiration (defined as the water use for eight inch tall grass), and all crops in California are related to this water use by adjusting ETo with a “crop coefficient”. In this example you will see that the crop coefficient for avocado in November is 0.55. ETo data is gathered from the automated weather stations that are part of the CIMIS network in California. The irrigation calculator you will be using multiplies the ETo number by the crop coefficient and gives you Etc, the water use by the crop in question. This comes from the station in “inches” of water loss, and the calculator changes this into gallons per tree per day. The calculator then tells you how much water to apply to the avocados to replace the water they used during the last seven days.
Go the website www.avocado.org
Click on California Industry (on the top right side of the page)
Click on Growers
Click on Water
Click on Irrigation Calculator
Start with Evapotranspiration (ETo).
Click on Go To CIMIS
Use the drop down box and Click on San Diego
Click on Submit
Choose Escondido
Click on Daily Data
- “Select a Time Period”, in this example we will select the previous week; select November 15 through November 21
- In “Select Variables”, leave everything selected with the green checkmark.
- Leave “English Units” selected.
- Click “Retrieve Data”
Write down ETo for the last week. In this case it will be: 0.12, 0.11, 0.11, 0.10, 0.12, 0.12 and 0.10.
Add these up, and you get 0.78 (this is your ETo for the past week). Minimize this window.
You are now back to the Irrigation Calculator on the Avocado website.
- Evapotranspiration, delete the 0.22 and fill in your 0.78
- Under “Crop Coefficient”, just click on November in the drop down box.
- Leave “Distribution Uniformity” at 0.85.
- Leave trees at 109 per acre.
- Leave sprinkler output at 17 gal/hr. (of course, you can change this to match your sprinkler output, but for the sake of this example, leave this at 17).
- Click on Calculate.
You should get 138 gallons (this is the amount of water used by one tree in the last seven days) and a watering run time of 8 hrs and 8 minutes.
As I mentioned earlier, you should have tensiometers (soil moisture meters) set at the 8 inch depth (avocado) or 12 inch depth (citrus) to tell you “when” to water. In avocados, I like to irrigate when the shallow tensiometer reads 20-25 cb, and in citrus when the tensiometer reads 35 – 40 cb. You cannot rely on irrigating every seven days because the tensiometer may tell you the soil is getting dry by the fourth day. This often happens in the summer.
To review, CIMIS tells you how much to water, the tensiometer tells you when to water. Now, in actual use, you may find that, in a windy area or on the south side of a slope, your trees may need more water. Merely add a 10% increase to the run time, and keep making minor adjustments until you get this right for your grove. Or, if you have root rot, you may want to water 10% to 30% less water.
By the way, if you are using this calculator for citrus, merely put 0.65 into the crop coefficient for each month, and you can use the same calculator. Some people believe the crop coefficient in the avocado calculator might be too low. Both Ben Faber and I believe the coefficient should be 0.80, but we don’t exactly have good data to support this…just experience. At any rate, the calculator will put you in the ballpark…and it is a lot better than “guessing”.
Give this a try, and Good Luck!
Irrigation Calculator developed by Reuben Hofshi, Shanti Hofshi and Ben Faber.
citrus irrigation