Posts Tagged: oil
Bad Avocado Oil?
The Romans were trying to stamp out and regulate adulterated olive oil 2,000 years ago. And now avocado oil has become profitable enough for it to become the focus of manipulation. Is that avocado juice what it is purported to be? Here's an interesting recent post from the UC ANR Food Blog
https://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=42759
- Author: Diane Nelson
Consumer demand is rising for all things avocado, including oil made from the fruit. Avocado oil is a great source of vitamins, minerals and the type of fats associated with reducing the risk of heart disease, stroke and diabetes. But according to new research from food science experts at the University of California, Davis, the vast majority of avocado oil sold in the U.S. is of poor quality, mislabeled or adulterated with other oils.
In the country's first extensive study of commercial avocado oil quality and purity, UC Davis researchers report that at least 82% of test samples were either stale before expiration date or mixed with other oils. In three cases, bottles labeled as “pure” or “extra virgin” avocado oil contained near 100 percent soybean oil, an oil commonly used in processed foods that's much less expensive to produce.
“I was surprised some of the samples didn't contain any avocado oil,” said Selina Wang, UC Cooperative Extension specialist in the UC Davis Department of Food Science and Technology, who led the study recently published in the journal Food Control.“Most people who buy avocado oil are interested in the health benefits, as well as the mild, fresh flavor, and are willing to pay more for the product. But because there are no standards to determine if an avocado oil is of the quality and purity advertised, no one is regulating false or misleading labels. These findings highlight the urgent need for standards to protect consumers and establish a level playing field to support the continuing growth of the avocado oil industry.”Testing domestic and imported brands
Wang and Hilary Green, a Ph.D. candidate in Wang's lab, analyzed various chemical parameters of 22 domestic and imported avocado oil samples, which included all the brands they could find in local stores and online. Wang and Green received a $25,000 grant from Dipasa USA, part of the Dipasa Group, a sesame-seed and avocado-oil processor and supplier based in Mexico.
“In addition to testing commercial brands, we also bought avocados and extracted our own oil in the lab, so we would know, chemically, what pure avocado oil looks like,” Wang said.
Test samples included oils of various prices, some labeled extra virgin or refined. Virgin oil is supposed to be extracted from fresh fruit using only mechanical means, and refined oil is processed with heat or chemicals to remove any flaws.
Fifteen of the samples were oxidized before the expiration date. Oil loses its flavor and health benefits when it oxidizes, which happens over time and when exposed to too much light, heat or air. Six samples were mixed with large amounts of other oils, including sunflower, safflower and soybean oil.
Only two brands produced samples that were pure and non-oxidized. Those were Chosen Foods and Marianne's Avocado Oil, both refined avocado oils made in Mexico. Among the virgin grades, CalPure produced in California was pure and fresher than the other samples in the same grade.
A push for standards
Ensuring quality is important for consumers, retailers, producers and people throughout the avocado oil industry. Retailers want to sell quality products, shoppers want to get their money's worth and honest producers want to keep fraudulent and low-quality oil out of the marketplace.
But since avocado oil is relatively new on the scene, the Food and Drug Administration (FDA) has not yet adopted “standards of identity,” which are basic food standards designed to protect consumers from being cheated by inferior products or confused by misleading labels. Over the last 80 years, the FDA has issued standards of identity for hundreds of products, like whiskey, chocolate, juices and mayonnaise. Without standards, the FDA has no means to regulate avocado oil quality and authenticity.
Avocado oil isn't the only product without enforceable standards. Honey, spices and ground coffee are other common examples. Foods that fetch a higher price are especially ripe for manipulating, especially when adulterations can be too subtle to detect outside a lab.
Wang is working to develop faster, better and cheaper chemical methods to detect adulteration so bulk buyers can test avocado oil before selling it. She is also evaluating more samples, performing shelf-life studies to see how time and storage affects quality, and encouraging FDA officials to establish reasonable standards for avocado oil.
Wang has experience collaborating with industry and the FDA. Ten years ago, she analyzed the quality and purity of extra virgin olive oil and discovered that most of what was being sold in the U.S. was actually a much lower grade. Her research sparked a cascade of responses that led California to establish one of the world's most stringent standards for different grades of olive oil. The FDA is working with importers and domestic producers to develop standards of identity for olive oil.
“Consumers seeking the health benefits of avocado oil deserve to get what they think they are buying,” Wang said. “Working together with the industry, we can establish standards and make sure customers are getting high-quality, authentic avocado oil and the companies are competing on a level playing field.”
Tips for consumers
- The flavor of virgin avocado oil can differ by varieties and region. In general, authentic, fresh, virgin avocado oil tastes grassy, buttery and a little bit like mushrooms.
- Virgin avocado oil should be green in color, whereas refined avocado oil is light yellow and almost clear due to pigments removed during refining.
- Even good oil becomes rancid with time. It's important to purchase a reasonable size that can be finished before the oil oxidizes. Store the oil away from light and heat. A cool, dark cabinet is a good choice, rather than next to the stove.
- How do you know if the oil is rancid? It starts to smell stale, sort of like play dough.
- When possible, choose an oil that's closest to the harvest/production time to ensure maximum freshness. The “best before date” is not always a reliable indicator of quality.
oil bottles
It's That Season Again When Growers Are Being Asked to Buy Products
Growers are faced with an ever-changing list of commercial “tools”, each with the promise of providing some advantage to the farmer. Frequently, these are new fertilizer mixes presented as proprietary cocktails promoted and dispensed with promises of a multitude of profitable (yet improbable) benefits to the buyer. With the large number of new products available, and the number of salespeople promoting them, it is often difficult for growers to distinguish between products likely to provide real benefit, and those that may actually reduce the profitability of the farm.
In all situations when a company approaches the University or a commodity research board with a new product or technology for sale to California growers, these institutions act as grower advocates. They are charged with sorting through the available information; asking the right questions; getting the necessary research done if the available information warrants this pursuit; disseminating accurate information on these new technologies and products, and doing all that can help maximize grower profits now and in the future. When approached with a new product or technology it is obligatory to challenge claims with the following questions:
Is there some basic established and accepted scientific foundation on which the product claims are made?
Language that invokes some proprietary ingredients or mysterious formulations, particularly in fertilizers mixes registered in the State of California, raises red flags. A wide range of completely unrelated product benefit claims (such as water savings, pesticide savings, increased earlier yield) raises more red flags. Product claims that fall well outside of any accepted scientific convention generally mean the product is truly a miracle, or these claims are borderline false to entirely fraudulent. Some of the water treatment products on the market fall into this category and can easily be checked against some of the studies found at this site: http://www.chem1.com/CQ/index.html
Has the product undergone thorough scientific testing in orchards?
Frequently, products are promoted based on testimonials of other growers. While testimonials may be given in good faith, they are most often not backed up by any real scientific testing where a good control was used to compare orchard returns with and without the product.
A “test” where a whole block was treated with a product and which has no reliable untreated control does not meet accepted standards for conducting agricultural experiments. Also, a treated orchard cannot reliably be compared to a neighboring untreated orchard; and a treated orchard cannot be compared to the same orchard that was untreated the previous crop year. Even a test with half a block of treated trees and half untreated is not considered dependable by any known scientific standard of testing.
Only a well designed, statistically replicated, multi-year trial allows for direct comparison of untreated versus treated trees with statistical confidence. Verifiable data from tests that meet acceptable standards of scientific design, along with access to raw baseline (before treatment) yield data from the same trees (preferably for the two years prior) should be used to determine the validity of test results provided.
Are the test results from a reliable source?
If the testing were not done by a neutral party, such as university scientists, agency, or a reputable contract research company using standard scientific protocols, this raises red flags. If the persons overseeing the tests have a financial interest in seeing positive results from the product, it raises red flags.
Does the product have beneficial effects on several unrelated farm practices?
A product that increases production of trees, makes fruit bigger, reduces pests, reduces water use, and reduces fertilizer costs, is more than a little suspicious. In reality, if such a product really existed, it would not need any testing at all because its benefits would be so obviously realized by the grower community that it would spread rapidly by word of mouth and embraced by the entire grower community.
Are other standard and proven farm products put down in the new product sales delivery?
If a new product vendor claims that their product is taken up 15 times faster than the one growers are currently using, or is 30 times more efficient, it probably costs 15 to 30 times more per unit of active ingredient than the standard market price. Growers should always examine the chemical product label to see what active ingredient they are buying. There has to be a very good reason to pay more for an ingredient where previously there had been no problem supplying the same ingredient at a cheaper price to trees in the past.
So what is a grower to do ?
New products come and go. Snake oil products often disappear rapidly, when their efficacy fails to materialize after application. Products that confound their purported results with fertilizers or growth stimulators can persist, but eventually they too fail to live up to expectations at some point and will fade from popularity. Try to obtain some kind of consensus with university-based research or other peer reviewed research reports, field efficacy trials that you run for yourself, and not on the testimonials of others. If you decide to conduct your own trials, they must be replicated and statistically analyzable, otherwise they are little more than anecdotal observations that have little value in quantifying the effects of a product or practice. For more help with trials, seek out University Extension advisors and specialists. This is their job, and they are willing partners in field research. After awhile, you will be able to ascertain the nature of the “oil” before you purchase it.
unknown product
California Olives and the Mystery of Santa Cruz Island
Recent advances in understanding the history of olive domestication
Elizabeth Fichtner, Farm Advisor, UCCE Tulare and Kings Counties
Olives are thought to have first been domesticated in the northeastern Levant, an area near the border of present-day Turkey and Syria. Map captured from Google Maps. |
With the emergence of the California olive oil industry, the state has witnessed a dramatic diversification in the olive cultivars grown commercially. Our mainstay black ripe olive industry, dominated by the ‘Manzanillo' olive, is now combined with increasing acreage of Spanish, Greek, and Italian cultivars used to create high quality, extra virgin oil. The historic table olive industry of California still represents around 18,000 acres of olives in the state, while approximately 40,000 acres are currently devoted to oil production.
Although olive cultivation in California is relatively new (dating back to the historic Spanish Missions established by Franciscan priests), olives are of key importance in the history and culture of the Mediterranean basin. A recent publication by a group of European, American, and North African scientists has re-evaluated the location of the domestication of the olive, providing genetic evidence that domestication occurred in the northeastern Levant, close to the present-day border of Syria and Turkey.
To complete the study, researchers collected plant material from nearly 2000 trees, sampling both wild oleaster populations and domesticated cultivars of olive. World Olive Germplasm Banks in Córdoba (Spain) and Marrakech (Morocco) served as sources of the majority of cultivars included in the study. Researchers utilized the genetic sequences of plastids (ie. chloroplasts) to discern differences between cultivars and wild oleaster populations. Plastids are organelles (structures inside cells) that contain their own DNA. Since plastids are generally inherited from one parent (similar to mitochondria), their genetic sequences are more conserved then that of nuclear DNA, which is contributed by both parents. Since olive is a wind-pollinated crop, nuclear DNA may be disseminated over large distances.
The genetic analysis of wild populations indicates three distinct lineages of olive: the Near East (including Cyprus), the Agean area, and the Straight of Gibralter. These three wild populations are likely linked to refuge areas where populations persisted through historic glaciation events. Interestingly, the geographic distribution of these three populations also corresponds to the subdivisions of the olive fruit fly, suggesting that these regions offered shared refuge habitat for both the host and the pest. The wild oleaster population in the eastern Mediterranean was found to be more diverse than previously thought and ninety percent of the present-day cultivars analyzed in the study matched this group. Common olive cultivars grown in California, including, Sevillano, Arbosana, Arbequina, and Koroneiki, all belong to this group originating in the eastern Mediterranean.
As a result of this study, it is proposed that the initial domestication of olive took place in the northeastern Levant; subsequently, plant material was disseminated to the whole Levant and Cyprus before being spread to the western Mediterranean. After these initial domesticated trees spread throughout the Mediterranean basin, they likely underwent subsequent domestication events by crossing with wild oleasters, thus introducing genetic material from the other two ancient western Mediterranean lineages.
Such studies may appear purely academic; however, they can also address more timely questions and assist in characterizing cultivars. For example, a 2010 study in California made genotypic comparisons between historic olive plantings in Santa Barbara, CA and at Santa Cruz Island, CA. The study elucidated that the olives on Santa Cruz Island, planted in the late 19th century are different than other historic olive plantings in Santa Barbara, CA. Olives planted at the Santa Barbara Mission in the late 18th century are the ‘Mission' cultivar, whereas those on Santa Cruz Island (Figure 3) are generally ‘Redding Picholine.' Interestingly, the olives on Santa Cruz Island are thought to have been planted for oil production, but there are no historic reports of harvest or sale of a crop. Additionally, the Santa Cruz Island olives have become somewhat invasive on the island due to their propensity to establish from seed. As a result of genotypic analysis of these populations and the fact that ‘Picholine' makes an excellent rootstock due to its ease of propagation from seed, it is hypothesized that the ‘Picholine' variety was intended as a rootstock, but the grafts never took. Consequently, maturation of a ‘Picholine' orchard may have just been an accident, a mistake, or simply bad luck. The completion of this local population genetics study may have helped explain the unsolved mystery of the historically unharvested trees on Santa Cruz Island.
Find Santa Cruz Island.
Besnard, G., Khadari, B., Navascués, M., Fernández-Mazuecos, El Bakkali, A., Arrigo, N., Baali-Cherif, D., Brunini-Bronzini de Caraffa, V., Santoni, S., Vargas, P., Savolainen, V. 2013. The complex history of the olive tree: from Late Quaternary diversification of Mediterranean lineages to primary domestication in the northern Levant. Proc R Soc B. 280: 20122833.
Soleri, D., Koehmstedt, A., Aradhya, M.K., Polito, V., Pinney, K. 2010. Comparing the historic olive trees (Olea europaea L.) of Santa Cruz Island with contemporaneous trees in the Santa Barbara, CA area: a case study of diversity and structure in an introduced agricultural species conserved in situ. Genet Resour Crop Evol 57:973-984.
/table>
olive tree
Where is that Oil Pipeline?
It just came to my attention that there is a map of all the oil pipelines in the US. If you go to the bottom/left side and put in the state and county, it will be revealed. This is mainly for those growers who need to be aware of pipelines and tillage or any other work in the aerea of a pipeline.
https://www.npms.phmsa.dot.gov/PublicViewer/
pipeline
Organic Control of Asian Citrus Psyllid is Challenging
With the detection of Huanglongbing (HLB) in California in 2012 and 22 additional cases reported during 2015 through June 2016 there is a major concern among citrus growers about the spread of this incurable bacterial disease. The vector of the disease, the Asian citrus psyllid (ACP), is a hardy insect with good dispersal capabilities and can be found in many southern California citrus groves today. With no direct cure for HLB at present, the only option for growers to combat the disease is to control the psyllid. This can prove difficult for conventional citrus growers with broad spectrum insecticides, but for organic citrus growers, which grow an estimated 7% of citrus in California, the task is even more difficult with the currently available options.
Entrust (spinosad) + oil, Pyganic (pyrethrin) + oil, and oil alone are currently the recommended and most widely used insecticide options for organic growers (UC IPM Guidelines for Citrus). While these insecticides are fairly effective in killing ACP if they make direct contact, the residual life of these pesticides is very short (days) compared to conventional insecticides (weeks to months). For example, in our petri dish studies, 10 fl oz/acre Entrust SC + 0.25% Omni supreme spray oil caused 89% mortality, 17 fl oz/acre Pyganic 5.0 EC + 0.25% Omni supreme spray oil caused 73% mortality and 0.25% Omni supreme spray oil caused 42% mortality when 1st-2nd ACP nymphs were exposed to treated leaves one day after application. Nymphal mortality continued to decline for the Entrust + oil treatment (69% mortality) and even more severely declined for Pyganic + oil (27% mortality) 3 days after treatment. In contrast, one-day-old residues of a conventional insecticide, the neonicotinoid 5.5 oz Actara (thiamethoxam), resulted in more than 95% mortality of nymphs and mortality remained high for more than a month.
Studies of grower orchard treatments confirmed laboratory studies that showed a short residual effect of organic treatments (Entrust + oil and oil alone) compared to conventional insecticides (Actara). We monitored changes in population densities of ACP (adults by tap, nymphs and eggs by flush examinations) in the fall of 2015 before and after a grower sprayed separate orchards with one of three insecticides; 1) 1.25% 440 Supreme Spray Oil by ground application (400 gpa), or 2) 9 fl oz Entrust SC + 1% oil by air (50 gpa), or 3) 5.5 oz Actara by air (50 gpa). The oil treatment had little effect on the adult population, but significantly reduced psyllid nymph densities for 17-24 days. Entrust was completely ineffective in controlling psyllid nymphs, but suppressed adult and egg populations for about 14 days. Actara, a conventional insecticide, was the most effective treatment in the study and provided more than 5 weeks of both adult and nymph control. Because of the short residual effect of organic insecticides in citrus, repeat treatments are needed at a frequency of about every 2 weeks for ACP control.
Tamarixia radiata wasps released for biological control of ACP provide 20% to 88% parasitism depending on geographical location and time of year. If there were no disease to be concerned about, this level of parasitism by Tamarixia would be sufficient to protect citrus from the feeding damage of the psyllid. However, the disease spreads rapidly with just a few psyllids and so a greater level of control is needed. Generalist predators, such as lady beetles, lacewings and assassin bugs, also assist with control. Argentine ants can severely disrupt this parasitism by protecting psyllids from natural enemies. Unhappily, Entrust + oil, thought of as a very selective insecticide combination, was found to be highly toxic to adult Tamarixia wasps exposed to 3 day old residues. Thus, the organic insecticide that is the best for controlling the psyllid pest is not compatible with the parasitoid natural enemy, limiting our ability to use integrated strategies to control the psyllid.
At present, it is not mandatory, but is strongly recommended, that all southern California citrus growers treat their orchards in an area wide manner. The area wide program consists of coordinated treatments twice a year (winter and fall), and additional treatments in between. Due to the short residual nature of organic insecticides, organic applications should be applied twice within 10-14 days of each other for every single conventional insecticide application. This is especially important for younger groves as ACP nymphs thrive in new flush. Organic growers have a tough decision to make between treating frequently for ACP and the high cost associated with those treatments or transitioning into conventional management in order to more effectively control ACP. Additional solutions are needed for organic citrus.
UC IPM Guidelines for Citrus: Asian Citrus Psyllid. http://ipm.ucanr.edu/PMG/r107304411.html
ACP adult and nymph